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Motivation and targets



  

Motivation

● The need to port huge numerical models on GPU: no 
computational “kernel”, individual model blocks have 
too small self perf impact (~10%), resulting into small 
speedups, if only one block is ported (the figure below 
is for COSMO model)

 → too hard to port models on GPU by hand



  

Motivation

● Most of the modern numerical weather prediction 
models are not suitable for manual parallelization due 
to enormous code base size:

 → too hard to port models on GPU by hand

Model Developer Lines of code
COSMO 4.13 DWD 187K
WRF 3.3 NOAA/NCAR 370K
AROME/ARPEGE METEOFRANCE 2280K



  

Motivation

● In well-known study on porting WSM5 block of the WRF 
model with OpenACC directives 40-60% of time is spent 
on communications 

 → intensive CPU ⟷ GPU data transfer may introduce 
significantly negative performance impact

The number of CPU 
cores and GPUs

Total time 
(seconds)

The time of 
transfers

The time of 
computations

1 / - 236

4 / - 70

1 / 1 19.72 10.75 8.85

2 / 2 12 6.87 5.29

Michael Wolfe, Craig Toepfer – Porting WRF

http://www.pgroup.com/lit/articles/insider/v1n3a1.htm


  

Targets

● Create runtime environment capable of executing 
original CPU applications on the GPU without code 
modifications

● Minimize data transfers by keeping all the application 
data in GPU memory and automatically porting onto 
GPU as much code as possible



  

Idea



  

Idea

● Many computational kernels, single main kernel

● Minimize data transfers by performing some serial 
computations on the GPU

+ Use DragonEgg/LLVM/Polly:

➔ Support many programming languages

➔ Automated search for potentially parallel code blocks

➔ Automated generation of GPU kernels



  

Idea

● Main host system and peripheral GPU:

➔ Transfer data from host to GPU

➔ Launch the GPU kernel and wait for completion

➔ Transfer results back from GPU to host
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Idea

● Main host system and peripheral GPU:

➔ Transfer data from host to GPU

➔ Launch the GPU kernel and wait for completion

➔ Transfer results back from GPU to host

● Main GPU and peripheral host-system:

➔ Port on GPU as much source code as possible, except host-only 
functions (I/O, syscalls, …)

The main
GPU-kernel for

entry point

...

GPU

GPU kernels
of individual
computational loops



  

Key results



  

Results

● KernelGen can recognize parallel loops in simple tests 
and can generate GPU kernels with efficiency 
comparable to PGI Accelerator

● KernelGen successfully compiles major NWP models: 
WRF, COSMO and SLM (ПЛАВ)

● Complexity: half-year work of 2 developers, based on 
many other projects



  

Some tests

Performance and register footprint of CUDA kernels 
generated with KernelGen and PGI:

In some cases kernels generated by KernelGen and PGI 
are significantly different, but performance is always 
comparable

Kernel KGen time KGen #regs PGI time PGI #regs CPU time

sincos 0.00390 9 0.00357 29 0.64972

jacobi_1 0.02063 24 0.02862 17 1.05245

jacobi_2 0.01233 7 0.01206 10 0.10387



  

KernelGen
 from the user point of view



  

User interface

● KernelGen can generate GPU code out of any language 
supported by the gcc compiler frontend

● KernelGen compiler flags are fully compatible with gcc 
(except the LTO logic, which is replaced by custom IR-
code link step)

● Required additional GPU configuration parameters are 
provided through the environment variables 
(kernelgen_runmode, kernelgen_verbose, 
kernelgen_szheap, …)



  

Compile application for KernelGen

$ make
cd kernelgen && make
make[1]: Entering directory 
`/home/marcusmae/Programming/kernelgen/tests/perf/sincos/m
alloc/kernelgen'
kernelgen-gfortran -c ../sincos.f90 -o sincos.o
KernelGen : NumExtractedLoops = 1 
CurrentFunction:"sincos_" CurrentHeader:"21.orig.header"
KernelGen : NumExtractedLoops = 2 
CurrentFunction:"sincos_" CurrentHeader:"12.orig.header"
KernelGen : NumExtractedLoops = 3 
CurrentFunction:"sincos_" CurrentHeader:"3.orig.header"
kernelgen-gcc -std=c99 -c ../main.c -o main.o
KernelGen : NumExtractedLoops = 1 CurrentFunction:"main" 
CurrentHeader:"6.orig.header"
kernelgen-gfortran sincos.o main.o -o sincos
$



  

Launch application for KernelGen

[marcusmae@noisy malloc]$ kernelgen_verbose=1 
kernelgen_runmode=1 kernelgen_szheap=$((1024*1024*1024)) 
kernelgen/sincos 512 512 64
Using KernelGen/CUDA

Building kernels index ...
__kernelgen_sincos__loop_21
__kernelgen_sincos__loop_12
__kernelgen_sincos__loop_3
__kernelgen_main_loop_6
__kernelgen_main

... 

Launching kernel __kernelgen_sincos__loop_3
    blockDim = { 32, 16, 2 }
    gridDim = { 16, 32, 32 }
__kernelgen_sincos__loop_3 time = 0.00407996 sec
only the kernel execution time = 0.00390173 sec



  

Compile application for PGI

$ make
cd pgi && make
make[1]: Entering directory 
`/home/marcusmae/Programming/kernelgen/tests/perf/sincos/malloc/pgi'
pgfortran -fast -Mnomain -Minfo=accel -ta=nvidia:4.1,time 
-Mcuda=keepgpu,keepbin,keepptx -c ../sincos.f90 -o sincos.o
sincos:
     12, Generating copyin(y(:nx,:ny,:nz))
         Generating copyin(x(:nx,:ny,:nz))
         Generating copyout(xy1(:nx,:ny,:nz))
     13, Loop is parallelizable
     14, Loop is parallelizable
     15, Loop is parallelizable
         Accelerator kernel generated
         13, !$acc do parallel, vector(4) ! blockidx%y threadidx%z
         14, !$acc do parallel, vector(4) ! blockidx%x threadidx%y
         15, !$acc do vector(16) ! threadidx%x
pgcc -c ../main.c -o main.o
pgfortran -fast -Mnomain -Minfo=accel -ta=nvidia:4.1,time 
-Mcuda=keepgpu,keepbin,keepptx sincos.o main.o -o sincos
make[1]: Leaving directory 
`/home/marcusmae/Programming/kernelgen/tests/perf/sincos/malloc/pgi'
$



  

Launch application for PGI

$ pgi/sincos 512 512 64
Accelerator Kernel Timing data
home/marcusmae/Programming/kernelgen/tests/perf/sincos/mal
loc/pgi/../sincos.f90
  sincos
    12: region entered 1 time
        time(us): total=2362577 init=2268435 region=94142
                  kernels=3575 data=86839
        w/o init: total=94142 max=94142 min=94142 
avg=94142
        15: kernel launched 1 times
            grid: [128x16]  block: [16x4x4]
            time(us): total=3575 max=3575 min=3575 
avg=3575



  

KernelGen
from the developer point of view



  

Compiling and linking

● Port whole code on the GPU

➔ Compiling and linking
➔ Problem: no linker for GPU code

➔ Compile parts of the code for GPU and link them manually, 
inlining everything into main kernel and loops kernels

➔ CUDA-compiler exists only for C/C++ code

● Automatically extract parallel loops

➔ Analyze simple AST or specialized IR?

➔ Parse high-level language or its AST (Rose, XML)  waste →
of time

➔ Parse intermediate representation (LLVM IR)



  

Components

● LLVM – the modular analysis and transformation 
system, working with the specialized intermediate 
representation (LLVM IR)

● DragonEgg – the gcc plugin, which converts gimple into 
LLVM IR, i.e. original program may be written in any 
language supported by gcc

● Polly – the loop optimization engine for LLVM IR

● C Backend – generates C code for the given LLVM IR 
module



  

Application runtime design

● Binary image still contains fully working host code used 
by default; GPU version is activated by request

● Almost all the code is running on the GPU

➔ Some parts of the code is not possible to port (functions in 
external libraries, system calls)  → external host calls are 
supported

● All data is stored in GPU memory and is offloaded to 
host only by request

● The main kernel is persistent on the GPU during the 
whole application lifetime  → hacks to overcome some 
limitations of CUDA, concurrent kernels execution



  

Handling host-only calls

● Example: atoi(<address_in_gpu>);

● Launch CPU function and synchronize data by request

➔ SIGSEGV handler to catch GPU memory range 
accesses during the host call

➔ mmap host memory pages onto GPU memory ranges 
and fill them with GPU data; synchronize data back 
after the function is finished

● Interaction model: “active” GPU, “passive” host (GPU 
initiates kernels launches and host calls)



  

Generating parallel loops

● Loop iterations dependency checks

➔ Runtime Alias Analysis

➔ LLVM Polly, ClooG

● Generate LLVM IR for GPU kernels

➔ GPU extensions for Polly

● Determine the GPU kernel compute grid

➔ Substitute kernel arguments

● Runtime-optimization of loops GPU kernels

➔ Substitute compute grid parameters, optimize LLVM

➔ Cache the analysis results



  

KernelGen uses JIT-compilation

● Kernel arguments substitution

➔ Runtime Alias Analysis
➔ Determine the optimal compute grid parameters

● Substitute the compute grid parameters

➔ Helps to reduce the register footprint



  

LLVM Polly



  

LLVM Polly: a tool for loop transformations
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(a)

● Polly is able to transform loop with dependent 
iterations (a) into loop with parallel iterations (b):

(b)
Illustrations (c) Tobias Grosser



  

LLVM Polly: a tool for loop transformations

(a)

● Polly is able to transform loop with dependent 
iterations (a) into loop with parallel iterations (b):

for (i = 1; i <= n; i++) {

  for (j = 1; j < i + m; j++)
    A[i][j] = A[i-1][j] + A[i][j-1]

  A[i][i+m+1] = A[i-1][i+m] + A[i][i+m]
}

parallel for (p = 1; p <= m+n+1; p++) {
  if (p >= m+2)
    A[p-m-1][p] = A[p-m-2][p-1]
  for (t = max(p+1, 2*p-m); t <= p+n; t++)
    A[-p+t][p] = A[-p+t-1][p] + A[-p+t][p-1]
}

(b)

Code examples (c) Tobias Grosser



  

LLVM Polly: capabilities

● Search for valid SCoPs in LLVM IR

● Optimizations:

➔ Split loops

➔ Transform loops polyhedra

➔ Loops interchanging

➔ ...

● Detect parallel loops

● Generate CLooG AST

● Generate LLVM IR out of CLooG AST

– used by KernelGen



  

Static Control Part (SCoP) 

● Polly works with ScoPs – parts of the program with the 
following properties:

➔ Structured control flow – counting variables, conditions
➔ Loop boundaries, array indices and conditionals are affine 

expressions of parameters and induction variables
➔ All operations (including function calls) do not have side 

effects

● For ScoPs it is possible to determine:

➔ Iterations polyhedras and the order of iterations inside them
➔ Memory access patterns



  

Semantic SCoP

● Polly can detect the semantic ScoPs, i.e. not only 
indexed for-/do- loops, but any code parts that behave 
like indexed for-/do- loops:

i = 0;

do {
  int b = 2 * i;
  int c = b * 3 + 5 * i;

  A[c] = i;
  i += 2;
} while (i < N);

for (i = 0; i == 0 || i < N; i += 2)
  A[11 * i] = i;

Code examples (c) Tobias Grosser



  

Semantic SCoP

● Polly can detect the semantic ScoPs, i.e. not only 
indexed for-/do- loops, but any code parts that behave 
like indexed for-/do- loops:

int A[1024];
int *B = A;

while (B < &A[1024]) {
  *B = 1;
  ++B;
}

int A[1024];

for (i = 0; i < 1024; i++)
  A[i] = 1;

Code examples (c) Tobias Grosser



  

Polly is not enough!

● In real-world applications compile-time info is often 
insufficient to detect the parallel loop



  

Runtime Alias Analysis



  

Runtime Alias Analysis

● In runtime more accurate alias analysis could be 
performed after substituting the values of pointers and 
checking the used memory intervals for intersection

➔ An argument to postpone loop analysis for runtime 
(JIT-compilation)

● For each pointer operation the access function is 
computed:

f(<the_number_of_iteration>) 

● With help of the ISL library, the problem of linear 
programming is solved: find the f maximum and 
minimum values in the given iterations space



  

Runtime Alias Analysis

● After substitution the pointer value in known, as well as 
its maximum and minimum relative offsets

➔ Thus, it is possible to compose the memory intervals:

0 <= i < 100
0 <= j < 200
ptr = (int*)322636916
f(i,j) = i * 200 + j

f_minimum = 0
f_maximum = 19999
interval:

[322636916, 322716914]



  

Runtime Alias Analysis

● For each pointer use we determine the memory interval

● If some memory write interval

➔ Intersects with another write interval

➔ Or intersects with read interval

Then the kernel is not parallel! 



  

Generating CUDA kernels

● Polly codegen was modified in order to:

➔ Determine the GPU thread indices in compute grid (GridDim, 
BlockDim, BlockIdx, ThreadIdx)

➔ Map loop iterations space onto GPU threads space



  

Generating CUDA kernels

● Organization of iterations-threads mapping:

● All threads perform the same number of iterations
● Threads with sequential indexes perform the sequential 

iterations
➔ Coalescing memory transactions

● Support for mapping iterations space onto any compute grid 
space (extra inner loops)

● Recursive analysis of nested loops:

● Utilize GPU capabilities for multidimensional compute grids 
creation

● The most inner loop always correspond to the “x” axis of the 
GPU compute grid



  

Computing the optimal GPU compute grid

● After substituting the kernel arguments the loops 
dimensions become known

● With known loops dimensions it is possible to compute 
the optimal compute grid configuration:

➔ Minimize the number of unused threads

➔ Specify the number of iterations to perform in each thread



  

Runtime-optimization of loops' kernels

● Initially the “universal” LLVM IR is generated for kernel 
loops: one thread may perform more than one loop 
iteration

● Upon the kernel launch, the used compute grid 
becomes known

➔ Extra IR-code optimizations could be performed 
after substituting the known constants

➔ Reduce the register footprint

➔ Eliminate fictive loops, less branching



  

Development plan



  

Programming

● Implement recursive nested loops analysis – already 
implemented during PCT conf ☺

● Privatize the global variables (no linker for GPU code)

● Re-implement host code JIT-compiler similar to lli

● Restructure the project source code (need better 
design)

● Implement kernels versions switcher heuristics and test 
it in real applications



  

Programming

● Optimizing data synchronization between CPU and GPU 
(#82,  #84)

● Implement kernels configurations cache

● Implement application computational profile dumping 
for further reuse

https://hpcforge.org/tracker/index.php?func=detail&aid=82&group_id=71&atid=366
https://hpcforge.org/tracker/index.php?func=detail&aid=84&group_id=71&atid=366


  

Testing

● Test KernelGen on benchmarks and target applications:

➔ Polybench, NPB, SPEC CPU 2006

➔ COSMO, WRF, SLM, MF-RAPS

● Bug fixing



  

http://kernelgen.org

The work is supported by Applied Parallel Computing contracts 12-2011 
and 13-2011, testing is performed on hardware installed at Lomonosov 
State University, SRCC MSU and supplied by NVIDIA.

http://kernelgen.org/


  

Testing

● Instructions available at project wiki pages:



  

Resources

● The LLVM Compiler Infrastructure
● Polly: Polyhedral optimizations for LLVM
● DragonEgg - Using LLVM as a GCC backend

http://llvm.org/
http://polly.llvm.org/index.html
http://dragonegg.llvm.org/
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